
Quantum liquids in confinement: the microscopic view

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2003 J. Phys.: Condens. Matter 15 S95

(http://iopscience.iop.org/0953-8984/15/1/311)

Download details:

IP Address: 171.66.16.97

The article was downloaded on 18/05/2010 at 19:23

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/15/1
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 15 (2003) S95–S100 PII: S0953-8984(03)54571-4

Quantum liquids in confinement: the microscopic view

E Krotscheck1,2, V Apaja1, A Rimnac1 and R Zillich3

1 Institute for Theoretical Physics, Johannes Kepler Universität, A-4040 Linz, Austria
2 Institute for Nuclear Theory, University of Washington, Seattle, WA 98195, USA
3 Department of Chemistry, University of California, Berkeley, CA 94720, USA

Received 9 October 2002
Published 16 December 2002
Online at stacks.iop.org/JPhysCM/15/S95

Abstract
We discuss, on a microscopic level, the effects of confinement on structural as
well as dynamic properties of quantum liquids. The most evident structural
consequences of confinement are layer structures found in liquid films, and free
surfaces appearing in liquid drops and slabs. These structural properties have
immediate consequences: new types of excitation such as surface phonons,
layer phonons, layer rotons, and standing waves can appear and are potentially
observable in neutron scattering spectra as well as in thermodynamic properties.

Atom scattering experiments provide further insights into structural
properties. Methods have been developed to describe elastic and inelastic atom
scattering as well as transport currents. The theory has been applied to examine
scattering processes of 4He and 3He atoms impinging on 4He clusters, as well
as 4He scattering off 4He films and slabs.

1. Introduction

The effects of confinement have been a central topic in the research on quantum liquids over
the past two decades [1], because confined systems provide more insights into the microscopic
nature of the many-particle system than the bulk liquid. Confinement can be caused by external
forces: quantum liquids in external matrices such as cavities, aerogels, hectorite gaps, or
nano-tubes. Liquids can also be spontaneously ‘confined’ by the very nature of the many-
particle Hamiltonian which makes the system self-bound. Quantum liquid clusters or slabs are
examples. Finally, we have combinations of both effects, as in adsorbed liquid films. Variants
of all of these systems are mixed configurations consisting, e.g. of 4He and 3He or 4He with
atomic impurities.

The structural properties of confined bosonic quantum fluids are quite well understood
from no other information than an underlying Hamiltonian. Fermi fluids are technically
significantly more tedious to deal with, but do not constitute a problem in principle. The
theoretical method of choice for determining the structure of bosonic quantum fluids is Monte
Carlo simulation which, however, becomes quite demanding when statistical fluctuations
become an issue. In these situations, the Jastrow–Feenberg theory for inhomogeneous
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systems [2] has turned out to be the optimal compromise between predictive power, technical
effort, and minimal phenomenological input.

The description of the ground state of a many-boson system starts with the choice of a
phenomenological Hamiltonian,

HN =
N∑

i=1

[
− h̄2

2m
∇2

i + Uext(ri)

]
+

∑
i< j

V (|ri − r j |). (1)

Symmetry breaking may be induced by an external ‘substrate’ potential Uext(ri), but it may also
occur spontaneously like in the formation of quantum liquid droplets. For the wavefunction,
one uses the Feenberg trial wavefunction,

�N (r1, . . . , rN ) = exp 1
2

[∑
i

u1(ri ) +
∑
i< j

u2(ri , r j ) +
∑

i< j<k

u3(ri , r j , rk)

]
, (2)

and determines the correlations by functional minimization of the energy expectation value.
This requires, of course, the evaluation of the energy in an approximation that is consistent with
the resulting Euler–Lagrange (EL) equations; the theory is known as the optimized hypernetted-
chain (HNC-EL) theory. A feature that is particularly relevant for the problem at hand is that
the functional optimization does not have a solution if the physical system is unstable against
infinitesimal perturbations.

2. Structure

Typical systems are adsorbed films, liquid clusters, and slabs; a variant of adsorbed films
is helium in aerogels and filled hectorite gaps where the liquid does not have a free surface.
Common to all helium systems on a substrate is a layered structure of the liquid,and the effect of
layering transitions [3, 4]. Translationally invariant systems cannot be found for all densities;
rather, one finds sequences of translationally invariant and patched configurations [3], or abrupt
transitions between systems of different numbers of atomic layers [4].

The prototype of systems that are confined due to many-body effects alone without any
external potential are quantum liquid clusters; these can be produced and examined from a
few atoms up to tens of thousands. Small clusters are of particular interest, because they
display finite-size effects, and because comparisons between Monte Carlo simulations [5] and
HNC-EL results [2] are available.

3. Dynamics

Dynamic situations are described by perturbing the system by a small, time-dependent potential
that drives the system out of its ground state. All correlations in the Feenberg wavefunction (2)
acquire time dependence and the excited state is

|�(t)〉 = e−iE0t/h̄ e
1
2 δU(t)|�0〉

[〈�0|eRe δU(t)|�0〉]1/2
, (3)

δU(t) =
∑

i

δu1(ri , t) +
∑
i< j

δu2(ri , r j , t) + · · · (4)

where |�0〉 is the ground state, E0 the corresponding energy, and U(t) is the time-dependent,
complex excitation operator, which is determined by the action principle:

δS = δ

∫ t

t0

dt 〈�(t)|H (t) − E0 − ih̄
∂

∂ t
|�(t)〉 = 0. (5)
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Figure 1. The figure shows the dynamic structure function S(k, ω) for a helium film with an areal
density n = 0.4 Å−3 (nearly six liquid layers) adsorbed on silicon for momentum transfer parallel
(left) and perpendicular (right) to the film.

The manipulations that lead to expressions for physical observables from equation (5) in an
inhomogeneous geometry are somewhat lengthy [2], but they lead to a reasonably transparent
form of the density–density response function:

χCBF(r1, r2; ω)√
ρ1(r1)

√
ρ1(r2)

=
∑
m,n

[φ∗
m(r1)[GCBF

mn (ω) + GCBF
mn (−ω)]φn(r2)], (6)

GCBF
mn (ω) = [h̄[ω − ωm + iε]δmn + 	mn(ω)]−1 (7)

	CBF
st (ω) = 1

2

∑
mn

Ṽ (s)
mn Ṽ (t)

mn

h̄(ωm + ωn − ω)
. (8)

The ωm and φm(r) are the Feynman (or RPA) excitation energies and eigenfunctions, and
Ṽ (t)

mn is a three-phonon coupling matrix element, which is neglected in the random phase
approximation. The dynamic structure function S(k, ω) is then obtained as Fourier components
of the imaginary part of the density–density response function. The self-energy 	mn(ω)

describes the interaction between single excitations in the host liquid. It is a non-local and
non-Hermitian operator reflecting the fact that we are dealing with a system where a mode
can either be absorbed or transfer some of its energy and momentum to other modes. In the
three-phonon approximation, an excitation may decay into two excitations of lower energy.

Figure 1 shows a typical structure function for a helium film on graphite for parallel and
for perpendicular scattering. In the parallel direction, we see two effects not present in the
bulk liquid: one is a surface mode which has the typical k3/2 dispersion relation. The second
effect is a secondary roton minimum appearing below the energy of the bulk roton. Analysis
of the relevant transition density reveals that this excitation corresponds to rotons propagating
in the atomic layer closest to the substrate; hence these modes are called ‘layer rotons’. In the
perpendicular direction,we see a fragmented strength along the normal phonon–roton spectrum
indicating a number of apparently dispersionless modes. These correspond to standing waves
perpendicular to the surface; such modes have been seen in experiments on neutron scattering
off 4He adsorbed on graphite powder [6].

The dynamic structure function for droplets, shown in figure 2, displays fewer features.
We still see the volume and surface modes, both broadened by finite-size effects; figure 2 also
shows the density fluctuations induced by an incoming neutron beam at four different energies.
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Figure 2. The left figure shows the dynamic structure function for a 4He droplet with 1000
particles; the markers show the experimental phonon–roton spectrum. Note the ripplon and the
phonon branches. The right figures show the density fluctuation induced in the droplet at the four
different energies indicated in the left figure.

(This figure is in colour only in the electronic version)

4. Atom scattering

The continuum solutions of the effective Schrödinger equation

− h̄2

2m

[
∇2 − ∇2√ρ1(r)√

ρ1(r)

]
ϕω(r) +

∫
d3r ′ 	(r, r′; ω)ϕω(r′) = h̄ω

∫
d3r ′ S(r, r′)ϕω(r′) (9)

describe the elastic channel of atom scattering. The equation of motion for impurity scattering
is formally identical, except that the static structure function S(r, r′) is replaced by δ(r − r′).

The scattering solutions of equation (9) are delimited by the energy h̄ω = −µ +
h̄2k2/(2m), where the chemical potential is µ ≈ −7 K. 	(r, r′; ω) is the configuration-
space representation of 	mn(ω). The real part of the self-energy renormalizes the excitation
energies and the imaginary part describes their finite lifetime.

The flux of outgoing atoms is given by the expectation value of the current operator ĵ(r)

with respect to the wavefunction (3), calculated to second order in the fluctuating correlations
δU(t):

j2(r) ≡ 1

4

〈�0|δU∗(t) ĵ(r) δU(t)|�0〉
〈�0|�0〉 . (10)

The excitation operator δU(t) is obtained from the first-order equations of motion (5).
The general second-order current is quite complicated, but only a few terms survive at

large distances from the system. The three-phonon approximation to the equations of motion
used in section 3 leads to tractable expressions for the second-order currents:

j2(r) → Re
h̄

4mi

[
ϕ∗

ω(r; t) ∇ϕω(r; t) +
∫

d3r2 d3r3 S(r2, r3) δũ∗
2(r, r2) ∇rδũ2(r, r3)

]

≡ j2,el(r) + j2,inel(r). (11)

ϕω(r) is a scattering solution of equation (9). The result (11) provides the decomposition of the
current into a one-body term describing the elastic channels, and a many-body term describing
inelastic scattering.
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Figure 3. The left figure shows the cross-section for energy transfer σ(Et ) for 3He scattering
at 4HeN plotted as a function of Et ; the incident energy is E = 26 K and N =
70, 112, 200, 400, 700, 1000. Excitations of ripplons and rotons can be discerned, with a broad
range of phonon excitations in between. The right figure shows the elastic reflectivity |R|2 (thick
curve), sticking probability, inelastic scattering probability, and transmittivity |T |2 as a function
of incident energy h̄ω of 4He atoms scattering from a 4He slab of about 80 Å thickness. The
probabilities add to unity.

Atom scattering calculations are relevant for two experimental activities: cluster scattering
experiments; and quantum reflection and evaporation experiments. We have performed
extensive calculations [7] on atom scattering off helium clusters; as an example, we show
in figure 3(a) the cross-section for transferring energy from the impinging 3He atom to the 4He
cluster. To model quantum reflection and evaporation experiments, we have studied symmetric
slabs of 4He with translational invariance in the x–y plane. Reflection and transmission
probabilities are obtained by solving the effective Schrödinger equation (9) in this geometry,
subject to the boundary conditions

ϕω(z) →
{

eik⊥z + Re−ik⊥z for z → −∞
T eik⊥z for z → ∞.

(12)

We consider normal incidence; the perpendicular wavevector, k⊥, is then determined by the
energy ω of the incident atom. If there is no energy loss, i.e. the single-particle excitations in
the host liquid are non-interacting quasiparticles, then the single-particle flux is conserved and
reflectivity and transmittivity add to unity: |R|2 + |T |2 = 1.

The fraction of inelastic scattering processes, i.e., sticking, inelastic reflectivity, or
transmittivity, can be computed from the self-energy by keeping track of the decay channels
of states excited by the impinging atom. An analysis of the asymptotic currents yields the
combined probability for inelastic processes as

1 − |R|2 − |T |2 = − 2m

h̄2k⊥
Im

∫
dz dz ′ ϕ∗

ω(z)	(z, z′; ω)ϕω(z ′). (13)

Figure 3(b) shows the probabilities of elastic and inelastic scattering processes as a function
of the incident energy h̄ω in the case of scattering from a helium slab. The oscillations in
the elastic and inelastic scattering probabilities in figure 3(b) arise as a consequence of the
finite thickness of the slab. The result shows quantum reflection at very low energies; at
slightly higher energies sticking is the dominant process due to low-energy ripplon modes
on the surface. The peaky structure near 14 K is due to roton excitation; experimentally, we
expect these features to show up at slightly lower energies, because the excitation energies in
the roton region are overestimated by the present theory.
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